Game Physics

Game and Media Technology
Master Program - Utrecht University

Dr. Nicolas Pronost



Numerical Integration



Updating position

« Recall that FORCE = MASS X ACCELERATION

— If we assume that the mass is constant then
F(py, t) = m=*a(py, t)

— We know that v'(t) = a(t) and p,'(t) = v(t)

— So we have F(p,,t) =m=*p,"”(t)

* This Is a differential equation
— Well studied branch of mathematics
— Often difficult to solve in real-time applications

% § Universiteit Utrecht Game P hyS icS



Taylor series

« Taylor expansion series of a function can be
applied on py at t + At

p, (t + At)
!/ Atz 144
— po(t) + At * Po (t) + > Po (t) + e
At™
., (n)

* But of course we don’t know the values of the
entire infinite series, at best we have p,(t) and the
first two derivatives

S Universiteit Utrecht Game Physics



First order approximation

« Hopefully, If At is small enough, we can use an
approximation

Po(t + At) = po(t) + At p,'(t)
e Separating out position and velocity gives

F(t)
v(t + At) = v(t) + a(t)At = v(t) + WAt

po(t + At) = p,(t) + v(t)At

5?; M S Universiteit Utrecht Game Physics



Euler's method

 This is known as Euler’'s method
v(t + At) = v(t) + a(t)At

po(t + At) = p,(t) + v(t)At

‘ v(t — At)

~

~
©® -
@,

a(t — At)

@)

v(t+AD) N l a(®)

N\

@

@

W

§

I/
Ub% Universiteit Utrecht Game Physics
AN



Euler's method

* S0 by assuming the velocity is constant for the
time At elapsed between two frames

— We compute the acceleration of the object from the net
force applied on it

a(t) = F(t)/m
— We compute the velocity from the acceleration
v(t + At) = v(t) + a(t)At
— We compute the position from the velocity
po(t + At) = p,(t) + v(t)At

%TL § Universiteit Utrecht Game P hyS iCS



Issues with linear dynamics

 We only look at a sequence
of instants without meaning

— E.qg. little chance that we see
the precise instant of bouncing

« Trajectories are treated
as piecewise lines

— we assume constant velocity
and acceleration in-between frames

%Z § Universiteit Utrecht Game P hyS iCS



Time step

« The smaller At, the closer to p,(s) = fosv(t) dt the

approximation, and so the more we can ignore
these issues

So the classic solution is to reduce At as much as
possible

— Usually frame rate of the game loop is enough

— But sometimes more steps are needed (especially if
frame rate drops)
« we perform more than one integration step per frame
« each step is called an iteration

* if his the length of the frame and n the number of iterations,
then At = h/n for each iteration of a step

’é

\

ﬁ

I/
;é Universiteit Utrecht Game Physics
AN



Time step

« However, our assumption Is that the slope at a
current point is a good estimate for the slope over
the entire time Interval At

* If not, the approximation can drift off the function,
and the farther it drifts the worse the tangent
approximation can get

S Universiteit Utrecht Game Physics



Error accumulation

X2 X1

/ —
// I
\ errors

/
/

—~ —

« Accuracy Is increased by taking the smallest step
as possible, however more rounding errors occur
and it Is computationally expensive

N
N

mb

I

Universiteit Utrecht Game Physics

&
N



Midpoint method

* |n the midpoint method we calculate the tangent in
the middle of the interval

— using Euler’'s method on half of the desired time step
« And apply it to our point across the entire interval

!/
X1 X1/2
.H
YL T N
®
§ % Universiteit Utrecht Game Physics 12

N
EN
L



Midpoint method

* The position of the point is given by

At At
p,(t + At) = p,(t) + At * v (t + 7,190 + 7v(t,po))

* The order of the error is dependent on the square
of the time step 0(At?) which is better than Euler’s
method (0O (At)) when At < 1

« Approximate the function with a quadratic curve
Instead of a line

o But still can drift off the function

% NS Universiteit Utrecht Game Physics



Improved Euler's method

 The improved Euler's method considers the
tangent lines to the solution curve at both ends of
the interval

* |t takes the average of two points, one
overestimating the ideal velocity and one
underestimating it

— defined by the up/down concavity of the curve (not
known in advance)

— reduces Euler’'s method error as ‘move back’ the point
towards the curve

 The order of the error is again 0(At#) as the
measure of the final derivative is still Inaccurate

@

\

§

I/
Ub% Universiteit Utrecht Game Physics
AN



Improved Euler's method

* Velocity to the first point (Euler’s prediction)
v; = v(t) + At * a(t,v)

* Velocity to the second point (correction point)
v, = v(t) + At *x a(t + At, vq)

* Improved Euler’s velocity
V1 + Uy

2

v(t + At) =

= M S Universiteit Utrecht Game Physics



Improved Euler's method

=

.
N

4
/]

&
%

/
{
4
4
4
]
U
II
%) !
e/
S U
R |
N 4
4
7 V1 + v,
$ v(t+A)=2—2
/i 2
s i
/
/ HE
/
; / ‘ U1
R
s e )
S U
v(t) ¢ o
———"”
<€ >
At
Universiteit Utrecht Game Physics



Runge-Kutta method

« Hopefully there exist methods that give better
results than a quadratic error

 The Runge-Kutta order four method (RK4) is for
example 0(At?)

|t can be seen as a combination of the midpoint
and modified Euler’'s methods where we give
higher weights to the midpoint tangents than to the
endpoints tangents

NS Universiteit Utrecht Game Physics



RK4

* We calculate the four following tangents
v, = At x a(t,v(t))

At 1
v, = At xa t+7,v(t)+zv1

At 1
vy =Atxal|lt+—,v(t) +=-v,
2 2
v, = At * a(t + At,v(t) + v3)
* And weight them as follows
V1 + 20, + 2v3 + 4

v(t + At) = v(t) + c

5?; M S Universiteit Utrecht Game Physics



RKA4 Yz

T
52
vy = At x a(t,v(t))
At 1 0 2
v, =Atxa t+7,v(t)+5v1 A
At 1 |
vy =At*xa t+7,v(t)+§v2 |
vy = At * a(t + At, v(t) + v3) |
v+ 20, + 203+ 1,
6
A
v v
<€ ><€ >
At/2 At/2
= % Universiteit Utrecht Game PhySiCS 19



Verlet integration

* The Verlet integration method Is based on the sum
of the Taylor expansion series of the previous time
step and the next one

p,(t + At) + p,(t — At)

At?
=po(t) + At xp,’ (t) + 2 *py () + -
!/ Atz 144
+ po(t) — At *xp,' (t) + 5~ * Do (t) — -

W,
N

. Universiteit Utrecht Game Physics

N
L



Verlet integration

+ Solving for the current position gives us
po(t + At) = 2p,(t) — p,o(t — At) + At?p," (£) + -+

- If the higher terms in 0(At*) are neglected again
we get

po(t + At) = 2p,(t) — po(t — At) + At*p,"" (t)

* Note that we do not explicitly use velocities

S Universiteit Utrecht Game Physics



Verlet integration

4
1
4
/4
1
14
/
/
7
/
U
U
U
/
/
/
II
/
/ t+ At
o Po( )
l .
U
/
/
U
U
/
4 :
l’ :
’
Po(t) ,/__,_ .................. ® 2xp,(t) —po(t—At)
po (t — At) “"‘a“" ......
----------- ‘F‘“
<€ ><€ >
At At
§ :1% Universiteit Utrecht Game Physics

NS



A

Verlet integration

It gives an order of error in O(At?)

Very stable and fast as does not need to estimate
velocities
But we need an estimation of the first p, (t — At)

— Usually obtained from one step of Euler’s or RK4
method

And more difficult to manage velocity related
forces such as drag or collision

% | ;-“"-E Universiteit Utrecht Game PhySiCS

NS

23



Implicit methods

« Every method so far used the current position
p, (t) and velocity v(t) to calculate the next
position and velocity

— this is referred to as explicit methods

* In implicit methods, we make use of the quantities
from the next time step!
po(t + At) = p,(t) + At * v(t + At)
— this particular one is called backward Euler

— the goal is to find the position p,(t + At) for which we
would end up at p, by running the simulation backwards

§ g% Universiteit Utrecht Game Physics 24

LN



Implicit methods

* Implicit methods do not guarantee more accuracy
than explicit methods

« But at least they do not add energy to the system,
they lose some

« Since we usually want a damping of the position
anyway (e.g. to simulate drag force or kinetic
friction), it's a lesser evil

NS Universiteit Utrecht Game Physics



N
N

Universiteit Utrecht

Backward Euler

Game Physics

26



Backward Euler

« But how do we calculate the velocity at a position
we don’t know yet?

 |f we know the forces applied we can calculate it
directly

— For example if a drag force F, = —b * v Is applied
v(t + At) = v(t) — At * b * v(t + At)

— And therefore

v(t)
v(t + At) =
1+At=*b
NI .
% Tbé Universiteit Utrecht Game PhyS|CS 27



Backward Euler

 |If we don’t know the forces in advance (that

nappens continuously in a game) or if solving the
orevious equation is not possible, we use a

oredictor-corrector method

— one step of explicit Euler’s method

— use the predicted position to calculate v(t + At)

« More accurate than explicit method but twice the
amount of calculation

N
% Game Physics

% N ;:‘f; Universiteit Utrecht

NS

28



Semi-implicit method

* The semi-implicit method provides simplicity of
explicit Euler and stability of implicit Euler

* Runs an explicit Euler step for velocity and then an
Implicit Euler step for position

v(t+At) =v(t) + At *a(t) =v(t) + At = F(t)/m
po(t + At) = p,(t) + At * vt} = p,(t) + At * v(t + At)

O

. a(t)

v(t + At) h ‘A‘

N
NS

N
7
Z00

. Universiteit Utrecht Game Physics 29



Semi-implicit method

* The position update in the second step uses the
next velocity and the implicit method

— good for position-dependent forces
— and conserves energy over time, so very stable

« Usually not as accurate as RK4 because order of
error Is still 0(At) but cheaper and similar stability

* Very popular choice for game physics engine

N
% :1% Universiteit Utrecht Game Physics 30

NS



Summary

« Many integration methods exist, each with its own
properties and limitations

— First order methods

« Euler method, Backward Euler, Semi-implicit Euler, Exponential
Euler

— Second order methods

« Verlet integration, Velocity Verlet, Trapezoidal rule, Beeman’s
algorithm, Midpoint method, Improved Euler’s method, Heun’s
method, Newmark-beta method, Leapfrog integration

— Higher order methods
* Runge-Kutta family methods, Linear multistep method

N
% :1% Universiteit Utrecht Game Physics 31

NS



Concluding remarks

Dimension
— We have shown integration methods for 1D variables

— However, every dimension can be calculated separately
using vector based structures

Rotational motion

— The integration methods work exactly the same for
angular displacement 6, velocity w and acceleration «

Evaluation of all dimensions and variables should
be done for the same simulation time ¢

%TL § Universiteit Utrecht Game Physics 32



End of
Numerical Integration

Next
Collision detection



