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Numerical Integration 



Game Physics 

• Recall that 𝐹𝑂𝑅𝐶𝐸 = 𝑀𝐴𝑆𝑆 × 𝐴𝐶𝐶𝐸𝐿𝐸𝑅𝐴𝑇𝐼𝑂𝑁 

– If we assume that the mass is constant then 

𝐹 𝑝𝑜, 𝑡 = 𝑚 ∗ 𝑎(𝑝𝑜, 𝑡) 

– We know that 𝑣′ 𝑡 = 𝑎(𝑡) and 𝑝𝑜
′ 𝑡 = 𝑣(𝑡) 

– So we have 𝐹 𝑝𝑜, 𝑡 = 𝑚 ∗ 𝑝𝑜
′′(𝑡) 

 

• This is a differential equation 

– Well studied branch of mathematics 

– Often difficult to solve in real-time applications 
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Updating position 



Game Physics 

• Taylor expansion series of a function can be 
applied on 𝑝0 at t + ∆𝑡 

 

𝑝𝑜 𝑡 + ∆𝑡

= 𝑝𝑜 𝑡 + ∆t ∗ 𝑝𝑜
′ 𝑡 +

∆𝑡2

2
𝑝𝑜

′′ 𝑡 + ⋯

+
∆𝑡𝑛

𝑛!
𝑝𝑜

𝑛 𝑡  

 

• But of course we don’t know the values of the 
entire infinite series, at best we have 𝑝𝑜 𝑡  and the 
first two derivatives 
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Taylor series 
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• Hopefully, if ∆𝑡 is small enough, we can use an 

approximation 

 
𝑝𝑜 𝑡 + ∆𝑡 ≈ 𝑝𝑜 𝑡 + ∆t ∗ 𝑝𝑜

′ 𝑡  

 

• Separating out position and velocity gives 
 

     𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + 𝑎 𝑡 ∆𝑡 = 𝑣 𝑡 +
𝐹(𝑡)

𝑚
∆𝑡 

     𝑝𝑜(𝑡 + ∆𝑡) = 𝑝𝑜(𝑡) + 𝑣(𝑡)∆𝑡 

 

 
5 

First order approximation 
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• This is known as Euler’s method 

     𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + 𝑎 𝑡 ∆𝑡 

     𝑝𝑜(𝑡 + ∆𝑡) = 𝑝𝑜(𝑡) + 𝑣(𝑡)∆𝑡 
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Euler’s method 
5.1 

𝑣(𝑡 − ∆𝑡) 

𝑎(𝑡 − ∆𝑡) 

𝑣(𝑡) 

𝑣(𝑡) 

𝑎(𝑡) 𝑣(𝑡 + ∆𝑡) 

𝑡 

𝑡 + ∆𝑡 



Game Physics 

• So by assuming the velocity is constant for the 

time ∆𝑡 elapsed between two frames 

– We compute the acceleration of the object from the net 

force applied on it 

𝑎 𝑡 = 𝐹(𝑡)/𝑚 

– We compute the velocity from the acceleration 

𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + 𝑎 𝑡 ∆𝑡 

– We compute the position from the velocity 

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜 𝑡 + 𝑣(𝑡)∆𝑡 
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Euler’s method 



Game Physics 

• We only look at a sequence 

of instants without meaning 

– E.g. little chance that we see 

the precise instant of bouncing 
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Issues with linear dynamics 

• Trajectories are treated 

as piecewise lines 

– we assume constant velocity 

 and acceleration in-between frames 



Game Physics 

• The smaller ∆𝑡, the closer to 𝑝𝑜 𝑠 =  𝑣 𝑡  𝑑𝑡
𝑠

0
 the 

approximation, and so the more we can ignore 

these issues 

• So the classic solution is to reduce ∆𝑡 as much as 

possible 

– Usually frame rate of the game loop is enough 

– But sometimes more steps are needed (especially if 

frame rate drops) 

• we perform more than one integration step per frame 

• each step is called an iteration 

• if ℎ is the length of the frame and 𝑛 the number of iterations, 

then ∆𝑡 = ℎ 𝑛  for each iteration of a step 
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Time step 



Game Physics 

• However, our assumption is that the slope at a 

current point is a good estimate for the slope over 

the entire time interval ∆𝑡 

• If not, the approximation can drift off the function, 

and the farther it drifts the worse the tangent 

approximation can get 
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Time step 



Game Physics 

 

 

 

 

 

 

 

• Accuracy is increased by taking the smallest step 

as possible, however more rounding errors occur 

and it is computationally expensive 
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Error accumulation 

𝑥0 

𝑥1 𝑥2 

errors 
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• In the midpoint method we calculate the tangent in 

the middle of the interval 

– using Euler’s method on half of the desired time step 

• And apply it to our point across the entire interval 
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Midpoint method 

𝑥0 

𝑥1/2 𝑥′1 

𝑥1 
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• The position of the point is given by 
 

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜 𝑡 + ∆𝑡 ∗ 𝑣 𝑡 +
∆𝑡

2
, 𝑝𝑜 +

∆𝑡

2
𝑣(𝑡, 𝑝𝑜)  

 

• The order of the error is dependent on the square 

of the time step 𝑂(∆𝑡2) which is better than Euler’s 

method (𝑂(∆𝑡)) when ∆𝑡 < 1 

• Approximate the function with a quadratic curve 

instead of a line 

• But still can drift off the function 
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Midpoint method 
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• The improved Euler’s method considers the 
tangent lines to the solution curve at both ends of 
the interval 

• It takes the average of two points, one 
overestimating the ideal velocity and one 
underestimating it 
– defined by the up/down concavity of the curve (not 

known in advance) 

– reduces Euler’s method error as ‘move back’ the point 
towards the curve 

• The order of the error is again 𝑂(∆𝑡2) as the 
measure of the final derivative is still inaccurate 
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Improved Euler’s method 
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• Velocity to the first point (Euler’s prediction) 

𝑣1 = 𝑣 𝑡 + ∆𝑡 ∗ 𝑎(𝑡, 𝑣) 

 

• Velocity to the second point (correction point) 

𝑣2 = 𝑣 𝑡 + ∆𝑡 ∗ 𝑎 𝑡 + ∆𝑡, 𝑣1  

 

• Improved Euler’s velocity 

𝑣 𝑡 + ∆𝑡 =
𝑣1 + 𝑣2

2
 

15 

Improved Euler’s method 
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Improved Euler’s method 

𝑣(𝑡) 

𝑣1 

𝑣2 

𝑣 𝑡 + ∆𝑡 =
𝑣1 + 𝑣2

2
 

∆𝑡 
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• Hopefully there exist methods that give better 

results than a quadratic error 

• The Runge-Kutta order four method (RK4) is for 

example 𝑂(∆𝑡4) 

• It can be seen as a combination of the midpoint 

and modified Euler’s methods where we give 

higher weights to the midpoint tangents than to the 

endpoints tangents 
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Runge-Kutta method 
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• We calculate the four following tangents 

𝑣1 = ∆𝑡 ∗ 𝑎(𝑡, 𝑣(𝑡)) 

𝑣2 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣1  

𝑣3 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣2  

𝑣4 = ∆𝑡 ∗ 𝑎 𝑡 + ∆𝑡, 𝑣 𝑡 + 𝑣3  

• And weight them as follows 

𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 +
𝑣1 + 2𝑣2 + 2𝑣3 + 𝑣4

6
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RK4 
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RK4 

𝑣(𝑡) 

𝑣1 

𝑣 𝑡 + ∆𝑡  

∆𝑡/2 ∆𝑡/2 

𝑣2 

𝑣3 

𝑣4 

𝑣1 + 2𝑣2 + 2𝑣3 + 𝑣4
6

 

𝑣1 = ∆𝑡 ∗ 𝑎(𝑡, 𝑣(𝑡)) 

𝑣2 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣1  

𝑣3 = ∆𝑡 ∗ 𝑎 𝑡 +
∆𝑡

2
, 𝑣 𝑡 +

1

2
𝑣2  

𝑣4 = ∆𝑡 ∗ 𝑎 𝑡 + ∆𝑡, 𝑣 𝑡 + 𝑣3  

5.2 
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• The Verlet integration method is based on the sum 

of the Taylor expansion series of the previous time 

step and the next one 

 

𝑝𝑜 𝑡 + ∆𝑡 + 𝑝𝑜 𝑡 − ∆𝑡

= 𝑝𝑜 𝑡 + ∆𝑡 ∗ 𝑝𝑜
′ 𝑡 +

∆𝑡2

2
∗ 𝑝𝑜

′′ 𝑡 + ⋯ 

               + 𝑝𝑜 𝑡 − ∆𝑡 ∗ 𝑝𝑜
′ 𝑡 +

∆𝑡2

2
∗ 𝑝𝑜

′′ 𝑡 − ⋯ 
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Verlet integration 
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• Solving for the current position gives us 

 

𝑝𝑜 𝑡 + ∆𝑡 = 2𝑝𝑜 𝑡 − 𝑝𝑜 𝑡 − ∆𝑡 + ∆𝑡2𝑝𝑜
′′ 𝑡 + ⋯ 

 

• If the higher terms in 𝑂(∆𝑡4) are neglected again 

we get 

 

𝑝𝑜 𝑡 + ∆𝑡 = 2𝑝𝑜 𝑡 − 𝑝𝑜 𝑡 − ∆𝑡 + ∆𝑡2𝑝𝑜
′′ 𝑡  

 

• Note that we do not explicitly use velocities 
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Verlet integration 
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Verlet integration 

𝑝𝑜(𝑡) 

∆𝑡 ∆𝑡 

𝑝𝑜(𝑡 − ∆𝑡) 

2 ∗ 𝑝𝑜(𝑡) − 𝑝𝑜(𝑡 − ∆𝑡) 

𝑝𝑜(𝑡 + ∆𝑡) 

∆𝑡2 ∗ 𝑎 𝑡  



Game Physics 

• It gives an order of error in 𝑂(∆𝑡2) 

• Very stable and fast as does not need to estimate 

velocities 

• But we need an estimation of the first 𝑝𝑜(𝑡 − ∆𝑡) 

– Usually obtained from one step of Euler’s or RK4 

method 

• And more difficult to manage velocity related 

forces such as drag or collision 
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Verlet integration 
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• Every method so far used the current position 

𝑝𝑜(𝑡) and velocity 𝑣(𝑡) to calculate the next 

position and velocity 

– this is referred to as explicit methods 

• In implicit methods, we make use of the quantities 

from the next time step! 

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜(𝑡) + ∆𝑡 ∗ 𝑣(𝑡 + ∆𝑡) 

– this particular one is called backward Euler 

– the goal is to find the position 𝑝𝑜 𝑡 + ∆𝑡  for which we 

would end up at 𝑝𝑜 by running the simulation backwards 
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Implicit methods 
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• Implicit methods do not guarantee more accuracy 

than explicit methods 

• But at least they do not add energy to the system, 

they lose some 

• Since we usually want a damping of the position 

anyway (e.g. to simulate drag force or kinetic 

friction), it’s a lesser evil 
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Implicit methods 
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Backward Euler 

𝑥2 

𝑥1 𝑥0 
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• But how do we calculate the velocity at a position 

we don’t know yet? 

 

• If we know the forces applied we can calculate it 

directly 

– For example if a drag force 𝐹𝐷 = −𝑏 ∗ 𝑣 is applied 
𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 − ∆𝑡 ∗ 𝑏 ∗ 𝑣(𝑡 + ∆𝑡) 

– And therefore 

𝑣 𝑡 + ∆𝑡 =
𝑣(𝑡)

1 + ∆𝑡 ∗ 𝑏
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Backward Euler 
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• If we don’t know the forces in advance (that 

happens continuously in a game) or if solving the 

previous equation is not possible, we use a 

predictor-corrector method 

– one step of explicit Euler’s method 

– use the predicted position to calculate 𝑣(𝑡 + ∆𝑡) 

• More accurate than explicit method but twice the 

amount of calculation 
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Backward Euler 



Game Physics 

• The semi-implicit method provides simplicity of 

explicit Euler and stability of implicit Euler 

• Runs an explicit Euler step for velocity and then an 

implicit Euler step for position 
 

𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 + ∆𝑡 ∗ 𝑎 𝑡 = 𝑣 𝑡 + ∆𝑡 ∗ 𝐹(𝑡)/𝑚 
 

𝑝𝑜 𝑡 + ∆𝑡 = 𝑝𝑜(𝑡) + ∆𝑡 ∗ 𝑣 𝑡 = 𝑝𝑜(𝑡) + ∆𝑡 ∗ 𝑣(𝑡 + ∆𝑡) 
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Semi-implicit method 

𝑣(𝑡) 

𝑎(𝑡) 

𝑣(𝑡 + ∆𝑡) 

𝑡 

𝑡 + ∆𝑡 
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• The position update in the second step uses the 

next velocity and the implicit method 

– good for position-dependent forces 

– and conserves energy over time, so very stable 

• Usually not as accurate as RK4 because order of 

error is still 𝑂(∆𝑡) but cheaper and similar stability 

• Very popular choice for game physics engine 
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Semi-implicit method 
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• Many integration methods exist, each with its own 

properties and limitations 

– First order methods 

• Euler method, Backward Euler, Semi-implicit Euler, Exponential 

Euler 

– Second order methods 

• Verlet integration, Velocity Verlet, Trapezoidal rule, Beeman’s 

algorithm, Midpoint method, Improved Euler’s method, Heun’s 

method, Newmark-beta method, Leapfrog integration 

– Higher order methods 

• Runge-Kutta family methods, Linear multistep method 
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Summary 
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• Dimension 

– We have shown integration methods for 1D variables 

– However, every dimension can be calculated separately 

using vector based structures 

• Rotational motion 

– The integration methods work exactly the same for 

angular displacement 𝜃, velocity 𝜔 and acceleration 𝛼 

• Evaluation of all dimensions and variables should 

be done for the same simulation time 𝑡 
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Concluding remarks 



End of 

Numerical Integration 

 

 Next 

Collision detection 


